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Abstract-A study is made of the heat transfer characteristics of a fully-developed pulsating flow in a 
channel. The fluid at the channel inlet is of temperature To. and the channel walls are at uniform temperature 
T,. Concern is directed to the thermally developing region. The unsteady Navier-Stokes equations are 
solved numerically to simulate a relatively slow throughflow at Re = 50, Pr = 0.7. Comprehensive time- 
dependent flow data are obtained for wide ranges of two key parameters, i.e. the pulsation amplitude 
0 < A < 0.75, and the nondimensional pulsation frequency M up to 10.0. When M is low, the velocity 
profiles resemble much of the quasi-steady solutions. When M is large, the effects of oscillation are confined 
to a narrow zone adjacent to the walls. The changes in the Nussclt number Nu due to pulsation are 
pronounced in the entrance region, say X/(Reh Pr) 4 I .O, and the impact of pulsation on Nu is minor at 
far downstream locations. The effects of M on Nu are noticeable when M is small and moderate. At high 
pulsation frequencies, heat transfer is little affected by the addition of pulsation. Detailed analyses on local 
behavior of heat transfer are made by using Fourier-series representations of the numerical results. These 
exercises indicate that, due to pulsation, both heat transfer enhancement and reduction can be expected in 
various axial locations of the channel. Based on these numerical results, physic~ly plausible expIanatio~s 

are offered to interpret the axial behavior of heat transfer. 

1. INTRODUCTION 

THE CHARACTERISTICS of a pulsating flow in a confined 
passageway have received considerable attention in 
recent years. The classical analyses [ 1,2] identified the 
pertinent nondimensional parameters : the Reynolds 
number of the average flow, and the dimensionless 
amplitude and frequency of pulsation. When the pul- 
sation amplitude is small, the theoretical endeavors, 
under several restrictive assumptions, clarified the vel- 
ocity distribution and phase relationship of the pul- 
sating flow in a duct or a pipe. These rudimentary 
findings were found to be in general agreement with 
some of the available experimental measurements 
over limited ranges [3-81. 

Studies of the attendant heat transfer characteristics 
of a pulsating flow in a duct have been far less numer- 
ous, and the existing investigations have often offered 
conflicting results [%15]. The obvious main question 
is how heat transfer is influenced by the presence of 
pulsation. This poses an issue of fundamental import- 
ance from the standpoint of basic research of unsteady 
convective heat transfer processes. Also, in practical 
applications, concern has been directed to the feasi- 
bility of enhancing heat transport by adding pulsation 
components to the throughflow in a duct. As observed 
by Hwang and Dybbs [9] and Simon and Seume [IO], 
however, experimental data on this topic are meager 
and incomplete. 

The physical phenomena underlying the unsteady 
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convective heat transfer are rather complex. Conse- 
quently, in an effort to acquire a proper understanding 
of the physical process, several models, which contain 
greatly simplified approximations, have been pro- 
posed. Despite their simplicity, these models have 
been presumed to depict the central elements of the 
physical systems under study. 

It is notable that the accounts by Siegel and 
Perlmutter [ 1 I] and Faghri et al. 1121, by resorting 
to theoretical idealized models, explored the principal 
character of heat transfer of a pulsating flow in a pipe 
(or a channel). In particular, Siegel and Perlmutter 
[ 1 l] demonstrated the explicit dependence of the over- 
all heat transfer on pulsation frequency. Furthermore, 
when a constant-temperature wall boundary con- 
dition was adopted, the resulting Nusselt number 
showed a periodic axial variation. These analytical 
undertakings pointed out the significance of the inter- 
action between the velocity and temperature oscil- 
lations, which could lead to increased heat transfer 
rates. 

The above-stated theoretical models laid the 
groundwork to ascertain the eminent physical pro- 
cesses at work in convective heat transfer of a pul- 
sating flow in a duct. However, it is equally important 
to inquire as to the applicability of the simplifications 
of these models to more realistic situations. First of 
all, the analyses of refs. [l 1, 121 were based on strictly 
linearized, one-dimensional-like approximations. The 
resulting velocity and temperature fields were con- 
sidered to be the algebraic combination of a non- 
pulsating part and a sinusoidally varying oscillating 
part. These approximations were necessary to carry 
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NOMENCLATURE 

oscillating amplitude of axial velocity 

axial pressure gradient, - (dP/GX) 

skin friction coefficient. 0, /( 1/2p U ,l;) 
specific heat of fluid 
axial additional convective term 

time-dependent fluctuation of axial 
temperature gradient 
half-width of flow channel 
thermal conductivity 
length of unheated section 
length of heated section 
frequency parameter. H (w/h) ’ ’ 

Nusselt number, dO/d Y 1, _ , 
pressure 
Peclet number, Rc Pr 

Prandtl number. v/r 
Reynolds number, U,, H/v 

dimensionless time 
dimensional temperature 
fluctuating part of temperature 
dimensional velocity components 
dimensionless velocity components 
fluctuating part of velocity 
dimensional axial and transverse 
coodinates 

out analytical treatments of extremely complicated 
physical systems. In addition, in the treatise of ref. 

[l 11, the fluid velocity was taken to be fully developed. 
Furthermore, when the simplitied energy equation 

was solved, the slug flow assumption was introduced. 
In the case of the theoretical examinations by Faghri 
et ul. [12], similar linearized formulations were 
invoked. Also, Faghri et ul. confined their linearized 
analyses to the parameter ranges of asymptotically 
low values of the pulsation frequency parameter. 

As emphasized previously, Faghri et al. [ 121 clearly 
brought into focus the major physical mechanisms at 
work, which stem from the interactions between the 
temperature and velocity oscillations. The results of 
these highly idealized analytical efforts yielded an 
improved understanding of the principal structures of 
unsteady flow and thermal fields. It has also to be 
stressed, however. that the underlying assumptions 
and approximations embedded in these theoretical 
models have not been critically assessed. As men- 
tioned earlier, experimental measurements have been 
scanty and sketchy ; consequently, the scope and limi- 
tations of these preceding theoretical accounts have 
not been appraised by other independent means. One 
alternative route is to conduct full-dress numerical 
simulations of pulsating flow and heat transfer prop- 
crties, and these issues are now addressed in this 
paper. The main objective is to encompass the par- 
ameter spaces that were difficult to cover by the pre- 
vious theoretical means. 

x. Y dimensionless axial and transverse 
coordinates 

?i* inverse of the Graetz number. 
XI(Rc Pr). 

Greek symbols 
3: thermal diffusivity, k/p<:,, 

0 dimensionless temperature 
0’ fluctuating part of dimensionless 

temperature 

(jr, dimensionless bulk temperature 

/l dynamic viscosity 
1 kinematic viscosity 

P density 
5 dimensional time 

& phase. 

Subscripts 
1 primary oscillating component 
m time mean value 
II harmonics index 
0 reference values 
s non-pulsating component 
t time-dependent component 
W wall. 

In the present work, numerical solutions to the 
unsteady, two-dimensional, elliptic-type Navier 

Stokes equations for a pulsating flow in a channel will 
be sought. The purpose is to secure comprehensive 
numerical solutions for the flow configuration of 
Siegel and Perlmutter [II] over broad ranges of the 
key nondimensional parameters. The outcome of 
these extensive numerical exercises provides the 

details of unsteady flow and thermal fields. The 
numerical results allow reevaluations of the suitability 
of the simplifying assumptions and approximations 
which were incorporated in the above theoretical 
models. 

It is noteworthy that some of the earlier numerical 
attempts [ 141 utilized the boundary-layer equations. 
However, if the pulsation amplitude is large, there 
arises the possibility of significant flow reversals near 
the wall; this would cast doubt on the usefulness 
of the parabolic-type boundary-layer-flow treatments. 
The present formulation of full Navier-Stokes equa- 
tions can overcome these difficulties, and, henceforth. 
it is selected in this study. 

2. FORMULATION 

The channel tlow geometry, coordinates (x, _r) and 
velocity components (u, c) are shown in Fig. 1. This 
is in accordance with the problem statement of ref. 
[l 11. The pulsating flow of constant temperature T,, 
at the inlet is given in the form of 
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FIG. I. Schema of the flow configuration. 

U,, = U,(l +A sin wz). (1) 

As remarked in ref. [I 11, an unheated hydro- 
dynamic entrance region of length Ll exists at the 
inlet, which is followed by a heated region of length 
L2. On the channel wall of L2, the condition of con- 
stant surface temperature T, is imposed. 

The full, time-dependent, incompressible Navier- 
Stokes equations, in properly nondimensionalized 
form, can be written, using standard notation, as 

au av 
~+~y=o 

av av av 
~+Uax+vay= -ff ay+&($+$) 

(4) 

;+u;;+vE=l a28 
ay pe(ax’ +%). (3 

In the above, the nondimensional quantities are 
defined as 

z 

t= H/Uo’ ~ P-5, Re=U,H/v, Pr=v/a, 
0 

Pe= RePr= U,H/a, l3sz 
Tw - To 

(6) 

where, v is the kinematic viscosity, M. the thermal 
diffusivity. 

The associated boundary conditions are now con- 
sidered. At the channel inlet, a unidirectional, pul- 
sating flow of uniform temperature is assumed, as 
described above : 

atX= -Ll,forO< Y-C 1, 

V(-Ll, Y, t) = 0 0) 

8(-Ll, Y, t) = 0. (7c) 

In (7a), the nondimensional pulsation frequency 

parameter, M = H(w/h) Ii’, emerges at the inlet flow 

conditions. 
At the channel walls, 

at Y= l,for -Ll <XC0 

U(X, 1, t) = 0 

V(X, 1, t) = 0 

(74 

(7e) 

gy(““” =o m 

at Y= l,forO<X< L2 

U(X, 1, t) = 0 

V(X,l,t) =o 

&C,l,t) = 1. 

(74 

(7h) 

(7i) 

Owing to the symmetry requirement at the channel 
centerline, we have 

at Y=O,for -Ll <X<L2 

gf(X,O,t) =o (7) 

V(X, 0, t) = 0 W) 

Fy(X, 0, t) = 0. 

At the channel exit, the flow is assumed to have 
attained a fully developed state. This is the usual pro- 

cedure (see [4, 51) when a long channel is considered, 
i.e. L2 >> 1. It is worth pointing out that this assump- 
tion of negligible gradients of velocity and tem- 

perature at the outlet (X = L2) becomes more com- 
patible if the outlet is connected to a long channel. 
Figure 1 illustrates this condition. Accordingly, at 
X= L2,forOC Y< 1 

3L2, Y, t) = 0 (7m) 

3L2, Y, t) = 0 (74 

3L2, Y, t) = 0. (70) 

In order to solve the above system of equations, the 

well established numerical solution technique, SIM- 
PLER algorithm of Patanker [16], was employed. In 
the present computations, typically 3&l 500 iterations 
were required for the local variables to achieve con- 
vergence. For convergence criteria, the relative vari- 
ations of axial velocity and of temperature between 
two successive iterations were smaller than the pre- 
assigned accuracy levels of 10e4. In actual calcu- 
lations, the well-known steady non-pulsating flow was 
used as the initial-state conditions. In most cases, 
temporally periodic solutions were obtained after 2- 
8 cycles of pulsation oscillation. The time resolution 
was such that one pulsating period was divided by 120 
time steps. The spatial mesh points were typically 
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I20 x 25 in the X-Y computational domain. The sen- 
sitivity of the calculated results to the grid interval. 
time step and accuracy level in the convergence criteria 
was checked by repeating calculations. The com- 
putational parameters that were selected in the present 
work were found to yield satisfactory results in the 
grid- and time step-convergence tests. 

pressure gradient. On the other hand, when M is large 
(see Fig. 2(b)), the time-dependent velocity com- 
ponent CJ, , is very small in magnitude (note the 

difference in scales used for the ordinates of Figs. 2(a) 
and (b)). Furthermore, the Y-profiles of C.‘,~ , are fairly 
flat in much of the channel interior, but U, . varies 

rapidly in the areas close to the channel wall. This is 
consistent with the physical interpretations that, when 

3. RESULTS AND DISCUSSIONS 
M is large, the effects of oscillation tend to be confined 

to a narrow zone adjacent to the walls [14]. As dcm- 
onstrated in Fig. 2. the present numerical solutions 

arc in satisfactory overall agreement with the pre- 
dictions of the previous theoretical models. 

In the actual implementations of numerical cal- 
culations, it was chosen that Ll = 100.0, L2 = 210.0 

to simulate a long channel. After several sample com- 
putations, these values were found [ 1 I-1 51 to produce 
developed flows in the heated portion of the channel 
as well as satisfy, to a fair degree of accuracy, the 
imposed exit boundary conditions, In accordance 

with the basic laminar flow formulations of refs. [l I-- 
151, the Reynolds and Prandtl numbers were set 
respectively at Re = 50.0, Pr = 0.7. This low value of 
Re is selected to simulate a reasonably slow through- 
flow. As observed by Siegel [ll, 131, the impact of 
pulsation is more clearly seen for slow flows. 

The pulsation amplitude was varied 0 d A < 0.75. 
These relatively large values of A were intended to 
examine the situations in which significant nonlinear 21 on the flow properties 
pulsation effects are present. Another crucial element 

of this study is to encompass wide ranges of the pul- 
sation frequency parameter M. In the present numeri- 
cal efforts, M varied up to 10.0. 

First, the velocity field data are recapitulated. In 
Fig. 2, the normalized time-dependent part of the fully 
developed velocity, CJ_,, is plotted, and comparisons 
are made with the results of the essentially one-dimen- 
sional analysis of ref. [1 11. When A4 is low, as illus- 
trated in Fig. 2(a), the velocitiy profiles resemble much 
of the quasi-state solutions, i.e. at each time instant, 
the velocity field is substantially similar to that of a 
non-pulsating flow driven by the instantaneous axial 

The temporal behavior of axial pressure gradient 
(B) and of skin friction coefficient (C,) in the fully- 

developed region is plotted in Fig 3. When M is 10~1. 
both the axial pressure gradient and skin friction are 
nearly in phase with the inlet velocity. However, when 
M is large, the pulsation effects arc noticeable. The 
magnitudes of the oscillating components are sub- 
stantial. Also, the phase leads, over the inlet velocity. 

of the axial pressure gradient and of skin friction 
approach 90 and 45’, respectively. These findings 
serve to reconfirm the qualitative correctness of the 

well-documented preceding analytical predictions ]I, 

The main topic of the heat transfer characteristics 
will be dealt with. The physical variable Nu, ~ rep- 
resents the difference between the Nusselt number for 
the pulsating flow and that for the non-pulsating flow 
(A = 0) under otherwise similar conditions. The axial 
locations are plotted by using the inverse of the Gractz 
number, X* = X/(&e Pr) (see ref. [I 11). 

Figure 4(a) exemplifies the axial profile of Nu! , 
when ,~l is reasonably small. It is obvious that. at 
downstream axial locations X,:(&J*/+) > 1.5. the 
influence of pulsation is quite minor. The changes in 
NU due to the pulsation are pronounced in the regions 
of small XI’(Re* Pr) or the heated channel. The sim- 
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FIG. 2. Y-profiles of the time-dependent fluctuation of u velocity. -, the present calculations: 
. analytic solutions [I I]. The frequency parameters are : (a) M = 0. I ; (b) A4 = 5.0. 
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FIG. 3. Time variations of (a) axial pressure gradient, B, and (b) skin friction coefficient, C,. A = 0.75. 

plified analytical predictions of Siegel and Perlmutter 
are in broad qualitative consistency with the present 
numerical results. When A is appreciable, Fig. 4(b) 
indicates substantial effects of pulsation in small-X* 

regions, say X* < 1.0. The quantitative discrepancy 
between the analytical results of ref. [ 1 l] and the pre- 
sent numerical data is seen as A increases. An inspec- 
tion of Fig. 4, as well as the spectrum analyses of these 
plots, is quite revealing. When the pulsation amplitude 
A is small, as shown in Fig. 4(a), the temporal 
behavior of Nu,_, is fairly symmetric about the half- 
period point. When A is appreciable, the profiles of 
Nu,_, are increasingly non-symmetric about the half- 
period point. Clearly, Nu,_, is periodic with the 
imposed pulsation period 27~ ; however, the presence 
of the higher harmonics, with shorter periods, is dis- 
cernible in Fig. 4(b). It is worth pointing out that the 

power spectrum of the velocity field itself does not 
contain notable contributions of the higher harmonics 

or, Degrees 

X* 

(0) 

-.--,M=2.0;-..--, M= 5.0. 

[l, 2, 11, 141. The heat transport, on the other hand, 
appears to be significantly affected by the presence of 
the higher harmonics. As will be asserted later, the 
nonlinear coupling of velocity and temperature oscil- 
lations leads to considerable contributions to heat 
transfer, and this is reflected in the Nu,_, plots of 
Fig. 4(b). 

The impacts of other relevant parameters on heat 

transfer are delineated. Figure 5 shows the effect of 

Mon (Nut_,),, the time-averaged Nu,_,. For low and 
moderate frequencies, say M up to approximately 
1.0, the changes in heat transfer due to pulsation are 
appreciable throughout much of the channel length. 
At high frequencies, M > 1 .O, relatively small changes 
in heat transfer are visible in and near the entrance 
regions X/(Re * Pr) < 1 .O ; in the bulk of downstream 
regions of the channel, heat transfer remains virtually 
unchanged by the addition of pulsation. The effect of 
A is exemplified in Fig. 6. As anticipated, changes in 

X* 

(b) 
FIG. 4. Axial behavior of N%_, at various times. Nu,_, denotes the difference between Nu for a pulsating 
flow and Nu for a non-pulsating flow under otherwise similar conditions. M = 2.0. -, the present 

calculations ; ., analytic solutions [I I]. (a) A = 0.15 ; (b) A = 0.75. 
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heat transfer are enlarged as A increases, especially in 
the upstream regions near the entrance. 

Compiling the comprehensive numerical results, the 
axial behavior of (Nu,_,), is displayed as functions 
of M in Fig. 7. This picture identifies the respective 
regimes in which the basic character of heat transfer 
shows qualitative changes. As ascertained previously, 
the influence of pulsation is notable in the upstream 
regions of the heated channel, and this is more pro- 
nounced at low frequencies. These trends are por- 
trayed in Fig. 8, which ilk&ales the characteristic 
regimes in the projected M-X* plane. Zone (1) 
denotes negative (Nu,_,),,; this implies that, at low 
frequencies and in the extreme upstream region close 
to the entrance region, the effect of pulsation tends 
to reduce heat transfer. Zone (II) represents positive 
(Nu,_.,), ; this indicates that, at low frequencies and 
in moderate downstream axial locations, heat transfer 
is enhanced owing to the pulsation. The net changes 
in Nu are rather meager in zone (III) and, therefore, 
they are of less interest (e.g. I(Nu,_,),I < 10m2). 
Another finding is that the shape of the demarcation 
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FIG. 6. Time averaged values of Nu, *_ M = 2.0. -. 

A =0.75;.....4 =O.SO;-.-.A =0.15. 

FIG. 7. Plots of [A%_ J, as a function uf X* and M. A ; 0.75. 

line, which divides zones (I) and (II), is determined 
principally by M and far less by A. The pulsation 
amplitude A has strong influence on the quantitative 
value of (/Vu, ,), (see Fig. 6); however, the overall 
qualitative characteristic patterns of (Nu, <),,, in the 
M-X* plane are little affected by il. 

S~marizing the numerical results exhibited in 
Figs. 5-8, it is obvious that the effect of puisation 
either enhances or reduces the local heat transfer, 
depending primarily on the axial locations concerned 
and on the frequency parameter. The physical mech- 
anism underlying this selective behavior of local heat 
transfer enhancement or reduction is explored. For 
this purpose, the prior analysis by Faghri et al. [12] 
provides guidance. It was pointed out in ref. [ 121 that 
the axial advective terms of the energy equation play 
a major role in the determination of the overall heat 
transports in a pulsating flow. Following the pro- 
cedures utilized in Faghri et ai. [I& the magnitude of 
each term in the time-averaged energy equation for a 
pulsating flow was plotted for detailed comparison 
with that for a non-pulsating flow (,4 = 0). The out- 
come of this laborious exercise discloses that the 

FE. 8. Exemplary plots of [Nu,Jm on the M-X* plane. 
Zones (I), (II) and (III) denote reductions. enhancements 
and no-changes (i.e. [A&_,],,, < IO-*) of local heat transfer 

over the non-pulsating flow values, respectiveiy. 
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FIG. 9. Plots of E; as shown in equation (8). A = 0.75. (a) X* = 0.14, (b) X* = 1.85. -, M = 1.0; 
---, M = 3.0; ---, A4 = 5.0. 

changes in heat transports are caused predominantly 
by the axially advective term, i.e. 

in which subscripts t and s refer, respectively, to pul- 
sating and non-pulsating flow, and m indicates time- 
averaging over a cycle. This observation is supportive 
of the earlier conclusion by Faghri et al. [12], although 
the linearized analysis by [12] was directed to more 
restricted flow regimes and in rather limited scopes of 
parameters. 

The above-derived F is a function of the spatial 
position and of M. The exemplary structure of F is 
illustrated in Fig. 9. Clearly, the overall magnitudes 
of Fare appreciable in the upstream regions close to 
the entrance, but they diminish in the downstream 
regions, say X* > 1.0 for the case of the parameter 
set of Fig. 9 (note the difference in scales for the 
abscissa in Fig. 9). It is also apparent that, in the 
moderate and far downstream regions, F is practically 
zero when the frequency parameter is large. The 
behavior of the y-integrated value of F- Pe is con- 
sistent with that of (Nu,_,), depicted in Figs. 5-7. 

Further physical insight is gained by decomposing 
this additional axial convection effect F. Note that F 
can be rewritten as 

(9) 

where subscript s refers to the steady non-pulsating part, 
and prime denotes the time-dependent fluctuation. 

The time-dependent fluctuation of the axial tem- 
perature gradient is Fourier-series represented 

$(X, Y,z) = GO+ f G,,*sin(nor+#J. (10) 
n= I 

4263 

In the above, G, indicates the constant part, i.e. 
the rectification of a time-dependent function, and 4” 
reflects the phase difference of the nth component 
relative to the inlet velocity. Similarly, the time- 
dependent velocity fluctuation in the fully developed 
region is expressed as 

u’( Y, r) E 2 U, * sin (nor). (11) 
II= I 

The typical structure of a0’/aX is plotted in Fig. 
10. Obviously, in the upstream region close to the 
entrance, the overall magnitudes of %‘/aX are sub- 
stantial, especially for low values of M (see Fig. 10(a)). 
However, ~~~~X weakens in the downstream regions 
(see Fig. 10(b) ; note the difference in scales for the 
ordinates in Figs. 10(a) and (b)). It is readily recog- 
nized in Fig. 10(a) that both the rectification, i.e. the 
magnitude of the average value, G,, and the presence 
of the higher harmonics in equation (9) are significant. 
This leads to the interpretation that, in the upstream 
region close to the entrance, the impact of the higher 
harmonics is noticeable in the thermal field. 

As reported by the preceding accounts on pulsating 
flow field characteristics [I, 2, 11, 141, U’ in equation 
(11) is predominantly made up of the base harmonic 
of the forced pulsating frequency, U,, and the mag- 
nitudes of the higher h~onics are negligibly small. 
Consequently, the major contributor to Fin equation 
(9) turns out to be the third term on the right-hand 
side, (~‘(a6’/aX)),. This term represents the inter- 
action of the velocity and temperature oscillations, 
and this effect was described as an extra diffusivity 
by Faghri et al. [12]. When the prior relations are 
substituted, they yield 

(12) 

and, therefore, 
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FIG. 10. Time variations of the fluctuating part of the axial temperature gradient. A = 0.75. Locations are 

(a) [A’*, Y] = [0.14,0.0], (b) [A’*, Y] = [1.85.0.0]. -m, M = 1.0: ~ m-1 M = 3.0; , M = 5.0. 

F= u;G,+ (;+cos(&). (13) 

It is interesting to note that the crucial part of (a@/ 
3X) is the base harmonic G,, which is in tune with 
the forcing pulsation frequency of the inlet velocity. 
The phase advance 4, of the G ,-component, relative 
to the inlet velocity, determines whether the overall 
heat transfer is enhanced or reduced at that par- 
ticular location. 

The preceding illustrations of the numerical results 
were given for Re = 50. However, additional cal- 
culations were conducted for other values of Re. The 
results of these computations were qualitatively the 
same as those for Re = 50. These point to the obser- 
vation that the data displayed in Figs. 2-8 are rep- 
resentative of heat transfer characteristics of slow pul- 
sating flows. 

The overall heat transport process may be described 

in general physical terms. For a non-pulsating flow in 

a channel of constant wall temperature (T, > To), the 
bulk temperature of fluid will develop a positive axial 
gradient. This bulk temperature gradient is high in 
the entrance regions, and it diminishes as the axial 
location moves downstream. Therefore, at some far 
downstream axial positions, the bulk temperature 
approaches T,,, and, thereafter, the axial gradient of 
fluid temperature becomes negligibly small. 

As succinctly expounded by previous studies [12. 
17-211, the net effect of flow oscillation gives rise to 
substantial extra diffusivity. This has been well estab- 
lished, e.g. by Watson [19] and Joshi et al. [20], and 
only the highlights of this concept are briefly recap- 
itulated here for definiteness. The velocity and tem- 
perature can be divided into two components, i.e. one 
representing the mean value and the other denoting 
deviation from this mean value ; 

u(.x, y, t) = U(x)+u’(x, ?‘, t) 

T(x, I’. 2) = T(x) + T’(.u, ?‘. f). (14) 

In the above, a barred quantity is detined as 

where P is the oscillation period and A, the channel 
cross-sectional area. Accordingly, the instantaneous 
heat flux in the axial direction may be written as 

Upon substituting equation (14) into equation (15). 
and taking the mean value yields 

(16) 

which can be rewritten as 

(17) 

where K/a G 1 -(U,~~_s+U’T’)/(a.d~/dx). 
Equation (17) is similar to the expression obtained 

previously by Joshi et nl. [20]. This clearly indicates 
that there exist heat transport in the axial direction by 
the oscillation-induced effective diffusivity K. Refer- 
ences [ 17-211 demonstrated that K/a is always positive 
and larger than unity. In fact, K/a is usually much 
larger than one, which implies an effective ampli- 
fication of conductive heat transfer by oscillation. Fig- 
ure 11 displays an exemplary plot of K/a. 

The physical explanation for the behavior of heat 
transfer between the fluid and the wall may now be 
better understood. In the entrance region, the axial 
bulk temperature gradient is steep, and the fluid tem- 
perature is raised, in comparison to the case of a non- 
pulsating flow, as a result of this heat transfer in the 
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FIG. 11. Axial variations of the effective thermal diffusivity 
K. M = 1.0, A = 0.75. 

negative X-direction. The heat transfer rate from the 
channel wall of T, to the fluid is thus reduced from 
that of a non-pulsating flow. This process is shown 
up in zone (I) of Fig. 8. At moderate downstream 
locations, the axial gradient of bulk temperature 
becomes, in general, less steep as the axial location 
moves downstream. The heat transports by the oscil- 
lation-induced extra diffusivity will vary along the 
axial location accordingly. The oscillation-induced 
heat conduction is more effective near the entrance 
region than near the far-downstream region. The net 
result is that the bulk temperature at moderate down- 

stream locations, therefore, tends to be lower than 
that of a non-pulsating counterpart. This leads to the 
conclusion that the heat transfer from the channel 
wall to the fluid is increased for a pulsating fluid, and 
this turns up as zone (II) in Fig. 8. At far downstream 
locations, the fluid bulk temperatures are essentially 
T,, and the oscillation-induced diffusivities are 
ineffective in rendering any changes in overall heat 
transport process. This is indicated in zone (III) of 
Fig. 8. In order to provide further credence to the 
above physical argument, the axial profiles of the bulk 
temperatures of a pulsating flow and of a cor- 
responding non-pulsating flow are plotted in Fig. 12. 
The axial behavior of these temperature profiles is 
consistent with the physical reasoning given in the 
above. 

Taking advantage of the wealth of comprehensive 
numerical data, validation was made of the cor- 
rectness of the above procedures. On one hand, the 
values of F secured by direct numerical computations 
in equation (8), as displayed in Fig. 3, were digitized. 
On the other hand, the computed results of u’ and 
83’jax were decomposed respectively into the Fourier 
series. The calculated values of U,, G, and 4, were 
utilized to yield (u’(dO’/aX))m as in equation (12). 
These two sets of the values were found to be in close 
agreement. 

The present numerical studies shed some light on 
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FIG. 12. Axial profiles of the bulk temperature of a pulsating 
and a non-pulsating flow. A = 0.75. p, M = 1.0; 

---. M = 2.0. 

the long-standing discrepancies that have been 
reported on heat transfer properties of a pulsating 
flow. As stated previously, some previous inves- 
tigations showed heat transfer augmentations, while 
others claimed heat transfer reductions or no changes. 
These apparently reflect the fact that some of these 
preceding studies were performed in a piecemeal 
fashion in the parameter space as well as in choosing 
the location of the channel. As displayed in the present 
endeavor, both local heat transfer enhancement and 
decrease can be expected in various axial locations of 
the channel, and these results depend on other rel- 
evant parameters in a rather complicated manner. 

4. CONCLUSION 

The afore-mentioned results of the numerical exer- 

cise point to the following observations. The flow 
field data are in broad agreement with the preceding 
analytical findings. When M is low, the velocity pro- 
files resemble much of the quasi-steady solutions. 
When M is large, the effects of oscillation are confined 
to a narrow zone adjacent to the walls. 

The effects of pulsation on Nu are pronounced for 

large A and in the upstream entrance regions, say 
X/(Re - Pr) < 1 .O. Changes in Nu due to pulsation are 
appreciable throughout much of the channel length 
when M is low and moderate. At high pulsation fre- 
quencies, M > 1 .O, changes in Nu are generally minor. 
In comparison to the case of a non-pulsating flow, 
reduction in local Nu is expected at low pulsation 
frequencies and in the extreme upstream region, and 

enhancement in local Nu is anticipated at moderate 
downstream locations. At locations further down- 
stream, Nu remains virtually unchanged. 

Detailed analyses on local behavior of Nu were 

performed by representing the numerically-obtained 
flow data in the Fourier series. In consistency with the 
preceding theoretical endeavors [ 121, the dominant 
contributor to the change in Nu stems from the 
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additional axial transport effect F. It is shown that the 8. 

extra diffusivity term plays the most significant role. 
This overall effect can be demonstrated to depend 9, 

crucially on the pulsating velocity component I/, , and 

the basic harmonic C, of %‘/dX, and the phase 

advance 4, of G, relative to the inlet velocity. IO. 
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